Friday, December 25, 2020

Diari RMCO2020 (Day - Lost count) COVID-19 : Bala atau Ujian

 بِسۡـــــــــمِ ٱللهِ ٱلرَّحۡـمَـٰنِ ٱلرَّحِـــــــيم

اَللَّهُمَّ صَلِّ َعلى سيدنا مُحَمَّدٍ وَ عَلَى آِل سيدنا مُحَمَّدٍ ْ ِ  

‏أَلًْلّٰهُمَّ إِنِّي أَسأَلُكَ الۡعَافِيَۃَ

Ya Allah, TERIMA KASIH atas kehidupan hari ini untuk NAFAS dan REZEKI yang Engkau limpahkan.

Jadikanlah permulaan hari ini penuh dengan KEBAIKAN, pertengahannya membawa KEJAYAAN dan pengakhirannya suatu KEBERUNTUNGAN..

Jadikan awalnya RAHMAT, pertengahannya NIKMAT dan penghujungnya PENUH BERKAT..

Ya Allah, beri kan lah kami semua ‘Afiyah serta kesihatan yang baik, dipermudahkan segala urusan duniawi dan juga ukhurawi, mendapat rahmat, nikmat, keberkatan dan keredhaan dari mu Ya Allah.  

رَبَّنَا ظَلَمْنَا أَنْفُسَنَا وَإِنْ لَّمْ تَغْفِرْلَنَا وَتَرْحَمْنَا لَنَكُوْنَنَّ مِنَ الْخَاسِرِيْنَ

رَبَّنَا ءَاتِنَا فِى الدُّنْيَا حَسَنَةً وَفِى اْلآخِرَةِ حَسَنَةً وَقِنَا عَذَابَ النَّارِ


Sehinggan 23 Disember 2020, jumlah kes kumulatif Covid-19 di Malaysia telahpun mencecah angka 98,737 kes mengatasi China yang mencatatkan kes 86,882 (ada yang mendakwa China tidak mengemaskini atau tidak berkongsi rekod penularan wabak di negara mereka yang terkini)

Disaat kebanyakkan negara masih mengawal pintu sempadan dan sedang berura-ura untuk kembali menutup pintu sempadan antarabangsa ekoran penemuan variant Covid-19 yang baru yang telah termutasi dengan genom yang lebih mengganas (katanya).

Tekanan baru muncul di Britain pada akhir November dimana UK mula menyiasat mengapa kadar jangkitan COVID-19 di Kent tidak menurun. Kajian sekumpulan pakar di UK menemui sekumpulan penyebaran yang cepat di England dan London tenggara yang dikaitkan dengan varian coronavirus. Namun, banyak yang masih belum diketahui mengenai jenis virus ini, yang dikenali sebagai garis keturunan B.1.1.7. Strain ini terkenal karena jumlah kes yang meningkat di beberapa bahagian di England, dan jumlah kes dan jumlah wilayah yang melaporkan jangkitan daripadanya semakin meningkat, menurut COVID-19 Genomics Consortium UK (COG-UK).

Semalam (23 Disember 2020), Malaysia pula mengesan mutasi baharu virus A701V. Tetapi masih belum mengesahkan kekuatan mutasi baru ini.

Dalam masa yang sama kerajaan sedang merancang kesesuaian untuk membuka kembali pintu sempadan bagi pemacuan ekonomi.  Yang mana saya pasti keputusan ini membimbangkan sebahagian besar rakyat terutamanya petugas barisan hadapan.

Pelbagai reaksi masyarakat bila disebut tentang waba ini. Penyakit “Wahn” – cinta dunia takut mati.

Sekarang ni memang semua sedang wahn dari wuhan (takut mati). Adakah waba yang melanda petanda kemurkaan, ujian, teguran atau bala ?

Apa sahaja penyakit dan musibah, waba yang berlaku, itu petanda dunia semakin menuju ke penghujung.

Apa tanda burung perepat,

dalam semak kaki tersula.

Apa tanda kiamat dah dekat

Bumi bergolak mengirim bencana.

(pantun ustaz badlishah)

 

Bencana ni ada banyak bentuk, antaranya

Kegagalan teknologi (contoh pesawat jatuh, keretapi tergelincir, kapal karam, pesawat hilang tak jumpa sampai sudah) 

Bencana sosial politik (konflik, rusuhan, peperangan termasuklah penyebaran waba.

Macam sekarang ni covid-19, sebelum ni ada h1n1, influenza, denggi, sars, merscov dan macam2 lagi.

Bencana geogologis klimatologis (tsunami, gempa bumi, taufan, banjir)

Orang Islam dah lama diperingatkan tentang semua ini. Tapi jangan sampai kita tak dapat melihat rahmat di sebalik kejadiann.

Apa makna musibah?

Diambil dari ayat quran


Surah At-Taghabun. Ayat 11: Tidak ada sesuatu yang berlaku kepada seseorang melainkan dengan izin Allah dan sesiapa yang beriman kepada Allah, Allah akan memimpin hatinya (untuk menerima apa yang telah berlaku itu dengan tenang dan sabar) dan (ingatlah), Allah Maha Mengetahui akan tiap-tiap sesuatu.

Baik atau buruk semua dengan izin Allah.

Tapi bagi manusia kalau buruk tu musibah, yang baik tu nikmat.

Wallahualam.

Hakikatnya, tiada wang pun mati, kena covid pun mati.

Sesungguhnya mati iku sangat pasti. Ianya sunnatullah.

Doalah sungguh-sungguh

Ya Allah Ya Rahman, Ya Rahim, Ya Rauf, Ya Ghaffur, Ya Ghaffar, Ya Affuw, Ya Tawwab, semoga Huda sekeluarga dan semua yang membaca doa ini diberi kesudahan yang baik, dengan iman sempurna dan taubat yang diterima Allah dan ada tempat disyurga NYA buat kita semua. Insha Allah. Ameen.


Saturday, December 12, 2020

Kat mana nak guna AI dan Machine Learning dalam real life?

AI tu bukan semata²
Artificial Intelligence.
AI tu lebih penting lagi 
 * Akhlak Intelligence
 * Adab Intelligence
Mana mungkin Artificial Intelligence itu menandingi "Adam" Intelligence. 
#bilahudatulis

*************************

With all the excitement and hype about AI that’s “just around the corner”—self-driving cars, instant machine translation, etc.—
it can be difficult to see how AI is affecting the lives of regular people from moment to moment. What are examples of artificial intelligence that you’re already using—right now?


Some old example of using artificial intelligence and machine learning in real life practice.

There are so many amazing ways artificial intelligence and machine learning are used behind the scenes to impact our everyday lives and inform business decisions and optimize operations for some of the world’s leading companies. Here are 27 amazing practical examples of AI and machine learning.


Consumer goods
Using natural language processing, machine learning and advanced analytics, Hello Barbie listens and responds to a child. A microphone on Barbie’s necklace records what is said and transmits it to the servers at ToyTalk. There, the recording is analyzed to determine the appropriate response from 8,000 lines of dialogue. Servers transmit the correct response back to Barbie in under a second so she can respond to the child. Answers to questions such as what their favorite food is are stored so that it can be used in conversation later.
Coca-Cola’s global market and extensive product list—more than 500 drink brands sold in more than 200 countries—make it the largest beverage company in the world. Not only does the company create a lot of data, it has embraced new technology and puts that data into practice to support new product development, capitalize on artificial intelligence bots and even trialing augmented reality in bottling plants.
Even though Dutch company Heineken has been a worldwide brewing leader for the last 150 years, they are looking to catapult their success specifically in the United States by leveraging the vast amount of data they collect. From data-driven marketing to the Internet of Things to improving operations through data analytics, Heineken looks to AI augmentation and data to improve its operations, marketing, advertising and customer service.
Creative Arts
Culinary arts require the human touch, right? Yes and no. AI-enabled Chef Watson from IBM offers a glimpse of how artificial intelligence can become a sous-chef in the kitchen to help develop recipes and advise their human counterparts on food combinations to create completely unique flavors. Working together, AI and humans can create more in the kitchen than working alone.
Another way AI and big data can augment creativity is in the world of art and design. In one example, IBM’s machine learning system, Watson, was fed hundreds of images of artist Gaudi’s work along with other complementary material to help the machine learn possible influences for his work including Barcelona, its culture, biographies, historical articles and song lyrics. Watson analyzed all the information and delivered inspiration to the human artists who were charged with the creating a sculpture “informed” by Watson and in the style of Gaudi.
Music-generating algorithms are now inspiring new songs. Given enough input—millions of conversations, newspaper headlines and speeches—insights are gleaned that can help create a theme for lyrics. There are machines such as Watson BEAT that can come up with different musical elements to inspire composers. AI helps musicians understand what their audiences want and to help determine more accurately what songs might ultimately be hits.
Energy
Global energy leader, BP is at the forefront of realizing the opportunities big data and artificial intelligence has for the energy industry. They use the technology to drive new levels of performance, improve the use of resources and safety and reliability of oil and gas production and refining. From sensors that relay the conditions at each site to using AI technology to improve operations, BP puts data at the fingertips of engineers, scientists and decision-makers to help drive high performance.
In an attempt to deliver energy into the 21st century, GE Power uses big data, machine learning and Internet of Things (IoT) technology to build an “internet of energy.” Advanced analytics and machine learning enable predictive maintenance and power, operations and business optimization to help GE Power work toward its vision of a “digital power plant.”
Financial Services
With approximately 3.6 petabytes of data (and growing) about individuals around the world, credit reference agency Experian gets its extraordinary amount of data from marketing databases, transactional records and public information records. They are actively embedding machine learning into their products to allow for quicker and more effective decision-making. Over time, the machines can learn to distinguish what data points are important from those that aren’t. Insight extracted from the machines will allow Experian to optimize its processes.
American Express processes $1 trillion in transaction and has 110 million AmEx cards in operation. They rely heavily on data analytics and machine learning algorithms to help detect fraud in near real time, therefore saving millions in losses. Additionally, AmEx is leveraging its data flows to develop apps that can connect a cardholder with products or services and special offers. They are also giving merchants online business trend analysis and industry peer benchmarking
Healthcare
AI and deep learning is being put to use to save lives by Infervision. In China, where there aren’t enough radiologists to keep up with the demand of reviewing 1.4 billion CT scans each year to look for early signs of lung cancer. Radiologists need to review hundreds of scans each day which is not only tedious, but human fatigue can lead to errors. Infervision trained and taught algorithms to augment the work of radiologists to allow them to diagnose cancer more accurately and efficiently.
Neuroscience is the inspiration and foundation for Google’s DeepMind, creating a machine that can mimic the thought processes of our own brains. While DeepMind has successfully beaten humans at games, what’s really intriguing are the possibilities for healthcare applications such as reducing the time it takes to plan treatments and using machines to help diagnose ailments.
Manufacturing
Cars are increasingly connected and generate data that can be used in a number of ways. Volvo uses data to help predict when parts would fail or when vehicles need servicing, uphold its impressive safety record by monitoring vehicle performance during hazardous situations and to improve driver and passenger convenience. Volvo is also conducting its own research and development on autonomous vehicles.
BMW has big data-related technology at the heart of its business model and data guides decisions throughout the business from design and engineering to sales and aftercare. The company is also a leader in driverless technology and plans for its cars to deliver Level 5 autonomy—the vehicle can drive itself without any human intervention—by 2021.
The AI tech revolution has hit farming as well, and John Deere is getting data-driven analytical tools and automation into the hands of farmers. They acquired Blue River Technology for its solution to use advanced machine learning algorithms to allow robots to make decisions based on visual data about whether or not a plan is a pest to treat it with a pesticide. The company already offers automated farm vehicles to plough and sow with pinpoint-accurate GPS systems and its Farmsight system is designed to help agricultural decision-making.
Media
The BBC project, Talking with Machines is an audio drama that allows listeners to join in and have a two-way conversation via their smart speaker. Listeners get to be a part of the story as it prompts them to answer questions and insert their own lines into the story. Created specifically for smart speakers Amazon Echo and Google Home, the BBC expects to expand to other voice-activated devices in the future.
UK news agency Press Association (PA) is hoping robots and artificial intelligence might be able to save local news. They partnered with news automation specialist Urbs Media to have robots write 30,000 local news stories each month in a project called RADAR (Reporters and Data and Robots). Fed with a variety of data from government, public services and local authorities, the machine uses natural language generation technology to write local news stories. These robots are filling a gap in news coverage that wasn’t being filled by humans.
Big data analytics is helping Netflix predict what its customers will enjoy watching. They are also increasingly a content creator, not just a distributor, and use data to drive what content it will invest in creating. Due to the confidence they have in the data findings, they are willing to buck convention and commission multiple seasons of a new show rather than just a pilot episode.
Retail
When you first think of Burberry, you likely consider its luxury fashion and not first consider them a digital business. However, they have been busy reinventing themselves and use big data and AI to combat counterfeit products and improve sales and customer relationships. The company’s strategy for increasing sales is to nurture deep, personal connections with its customers. As part of that, they have reward and loyalty programs that create data to help them personalize the shopping experience for each customer. In fact, they are making the shopping experience at their brick-and-mortar stores just as innovative as an online experience.
As the world’s second-largest retailer, Walmart is on the cutting edge of finding ways to transform retail and provide better service to its customers. They use big data, machine learning, AI and the IoT to ensure a seamless experience between the online customer experience and the in-store experience (with 11,000 brick-and-mortar stores, something rival Amazon isn’t able to do. Enhancements include using the Scan and Go feature on the app, Pick-up Towers and they are experimenting with facial recognition technology to determine if customers are happy or sad.
Service
Central to everything Microsoft does is leveraging smart machines. Microsoft has Cortana, a virtual assistant; chatbots that run Skype and answer customer service queries or deliver info such as weather or travel updates and the company has rolled out intelligent features within its Office enterprise. Other companies can use the Microsoft AI Platform to create their own intelligent tools. In the future, Microsoft wants to see intelligent machines with generalized AI capabilities that allow them to complete any task.
When you bring together cloud computing, geo-mapping and machine learning, some really interesting things can happen. Google is using AI and satellite data to prevent illegal fishing. On any given day, 22 million data points are created that show where ships are in the world’s waterways. Google engineers found that when they applied machine learning to the data, they could identify why a vessel was at sea. They ultimately created Global Fishing Watch that shows where fishing is happening and could then identify when fishing was happening illegally.
Always at the top of delivery extraordinary service, Disney is getting even better thanks to big data. Every visitor gets their own MagicBand wristband that serves as ID, hotel room key, tickets, FastPasses and payment system. While guest enough the convenience, Disney gets a lot of data that helps them anticipate guests’ needs and deliver an amazing, personalized experience. They can resolve traffic jams, give extra services to guests who may have been inconvenienced by a closed attraction and data even allows the company to schedule staff more efficiently.
Google is one of the pioneers of deep learning from its initial foray with the Google Brain project in 2011. Google first used deep learning for image recognition and now is able to use it for image enhancement. Google has also applied deep learning to language processing and to provide better video recommendations on YouTube, because it studies viewers’ habits and preferences when they stream content. Next up, Google’s self-driving car division also leverages deep learning. Google also used machine learning to help it figure out the right configuration of hardware and coolers in their data centers to reduce the amount of energy expended to keep them operational. AI and machine learning has helped Google unlock new ways of sustainability.
Social Media
From what tweets to recommend to fighting inappropriate or racist content and enhancing the user experience, Twitter has begun to use artificial intelligence behind the scenes to enhance their product. They process lots of data through deep neural networks to learn over time what users preferences are.
Deep learning is helping Facebook draw value from a larger portion of its unstructured datasets created by almost 2 billion people updating their statuses 293,000 times per minute. Most of its deep learning technology is built on the Torch platform that focuses on deep learning technologies and neural networks.
Instagram also uses big data and artificial intelligence to target advertising and fight cyberbullying and delete offensive comments. As the amount of content grows in the platform, artificial intelligence is critical to be able to show users of the platform information they might like, fight spam and enhance the user experience.
RUJUKAN:

Monday, December 7, 2020

Apa itu Gig Economy

 What do you know about gig economy?

Sebut dah macam hipster dah. hahaha.

Kalau ikut kamus, gig tu maksud mudah dia temporary.

Kalau ikut asal usul gig ni - dia muncul sebab gig performance dalam music/ street music. Rasional dia, orang music buat performance kan bukan selamanya. Akan ada pengakhiran. So key dia temporary.

Tapi gig economy - betul ke macam tu?

Economy yang sementara?

Dulu-dulu zaman mak ayah or kakak abang kita, nature nya kalau dapat keje gomen, seseorang tu dikira bertuah yang amat.

Sebab full time job dan secure job, and key point dia ada pencen, pastu kalau sakit boleh p spital kerajaan.

Pastu seiring dengan peredaran zaman, ecewah zaman kita (eh zaman saya la - sebab "kita" tu subjective la pula bergantung sapa yang baca kan.... hihihi).

Ok zaman saya, we always tot that orang yang dapat kerja private, mnc, glc, perh kira hebat tau. Sebab kerja tetap, gaji banyak, dapat profit sharing, bonus, medical benefit, etc.

So key point dia dulu2 orang nak cari kerja tetap dan secure. Tapi mungkin dulu2 kerja boleh balik on time, still ada masa untuk buat aktiviti lain selain daripada kerja hakiki, ada masa dengan keluarga etc.

Tapi sekarang, kerja macam tak sudah2, tak habis2, So banyak dah beralih nak cari kerja yang ada work life-balance.

Maka seiring dengan kemajuan teknologi dan peningkatan / pengukuhan ekonomi.... nature tu berubah lagi.

Bukan semua orang look forward nak kerja gomen or nak kerja mnc.... tapi mungkin nature sekarang nak cari kerja senang i.e. flexible dan boleh susun jadual sendiri sebab nak ada freedom. Depa kalau boleh nak kerja dari atas katil je. Duit dihujung jari. Tapi ada juga flexible ni bagi sesetengah orang tapi pekerjaan yang sama tu as itu je la option yang seseorang yang lain tu pula ada. Contoh macam rider food delivery. Ada yang jadi rider tu saja suka2 nak cari duit poket, tapi ada yang betul2, tu je pekerjaan yang dia boleh buat dan dah jadi full time and main source of income dia.

So semakin hari semakin susah nak ukur pergerakan ekonomi yang melibatkan pergerakan manusia yang dinamik.

Kalau ikut term dan definisi ILO, ada 2 standard utama yang diguna pakai iaitu:

1) International Classification of Status in Employment (ICSE) - ni pecah 2 lagi iaitu "type of authority" dan satu lagi type of economic risk", 

dan standard kedua ialah:

2)International Classification of Status at Work (ICSaW)

Versi dulu2, status of employment ni ada basic 6 je. 

Employer,

Employee,

own account workers,

members of producers'cooperative,

contributing family workers (atau kalau kat sini digunakan unpaid family workers) dan

workers not classifiable by status. ni versi icse-93 kalau tak silap.

yang recent depa bincang icse-18 (merujuk kepada conference tahun 2018 kalau tak silap), list dan definisi status of employment tu makin panjang dan details. Which you'll find term such as dependent and independent worker with or without employees, crowdwork, just-in-time workforce and many more (boleh rujuk di laman web ILO). 

sorry sebab dah tak rajin nak tulis. hihihi....

So berbalik kepada gig economy ni, kebanyakan study adalah tentang orang yang kerja ada platform dan biasanya menggunakan digital platform. Digital platform ni pula terbahagi kepada 2 la at least iaitu berasaskan web (contoh freelance market place, jual beli online tu kan macam fashionvalet, shopee etc, pastu yang jadi youtubers / creative content, teaching online, eh ngajo buat kek online pun ada and a lot more sampai tak terkira). Dan satu lagi platform berasaskan lokasi contoh macam uber, air bnb etc.

Tapi tengah2 depa study, depa dok terfikir balik ehhh tadi kata gig tu sementara - so tak kisahla ada platform ke tidak kan. Haaa sudah. confuse.

Macam ada satu research paper kat uk ni : Gig Economy: Introduction (House of Lords Library Briefing) Author: James Ainsworth, 2017, dia study gig workers/ economy ni berasaskan 6 sektor iaitu Taxi Driving, Food Delivery, Good Couriers,Skilled Manual Labours, Unskilled Manual Labours, dan yang ke-6, Professional, Creative and Administrative Labour

Sebabnya kewujudan bentuk ekonomi baharu ini yeah turut memberi isu dan ancaman kepada ekonomi tradisi contoh:

uber vs taxi

airbnb vs hotel

etc.

Dan disebabkan pergerakan kerja yang dikerjakan yang menghasilkan income ni terlalu robust, maka setiap pengkaji yang menjalankan kajian akan define sendiri apa term gig yang diaorang nak pakai dan nak kaji dan untuk tujuan apa.  

Why we need to measure this gig workers? Of course la, depa gheja, depa earn, depa spend bukankah itu ada pergerakan ekonomi. Perlu la ianya diukur. Flexibility, source of income, working hours, social protection, epf, tax etc. there are bundle of issues and challenges yang boleh disenaraikan.  SO end up kita perlukan la encik robot ai barangkali untuk tlg p study pasal gig ni. hihihi...

ok cukup la tu sebab nanti bebelan ni jadi panjang sangat pula.

nanti la kita baca lagi dan tengok apa yang boleh di buat.

Okay bye. #berentisecaratiba2danmengejutsebabdahmengantok

Wassalam.

#bilahudatulis

Friday, December 4, 2020

Apa itu BLOCK + CHAIN = BLOCKCHAIN

Sementelah kena buat kerja ni marilah kita melayan satu topik yang hipster iaitu BLOCKCHAIN.

Apa itu blockchain?

Alah alah alah.... Ramai acah-acah faham tapi ye ker faham atau banyak salah faham. hihihi. Yer termasuk saya la tu yang acah faham tapi ntah faham ke tidak sebenarnya.

Justeru marilah nak kisahkan apa yang difahami tentang blockchain ni.  Kalau ter salah faham, bolehlah yang faham tolong betulkan. kerana dakhuda baru belajar. Kalau salah tolong tunjukkan, jangan marah-marah. Gitcheww.

Kalau ikut kefahaman saya dengan bahasa mudah. 

BLOCKCHAIN = BLOCK + CHAIN

hihihi ....  mudah bukan? #siapamarahnantikenajualTQ

Konsepnya dia terdiri daripada BLOCK dan CHAIN. Tapi iyalah, apa yang di BLOCK kan dan apa pula yang di CHAIN kan.

Kalau ikut apa yang saya faham, dengan bahasa mudah

1. BLOCK - fungsi dia menyimpan maklumat dalam bentuk digital.

2. information yang disimpan tu mestilah information yang PENTING/ BERHARGA. Namun, Penting bagi setiap orang tu berbeza

tp commonly - aset/ harta.

kalau kita google blockchain dia mesti direct ke bitcoin. Tapi blockchain ni bukan bitcoin je sebenarnya. Ada group yang valuable information nya  ialah DATA erm contoh data voting, data kesihatan, dan macam2 lagi. Even kalau nak simpan rekod pelajar yang selesai bergraduasi pun boleh. Maka bolehlah kita trace and track kes ijazah palsu ni. hihihi.

Contoh mudah sikit (M-A-Y-B-E)

contoh transaction yang disimpan dalam BLOCK ni biasanya benda yang penting la.So apa benda yang penting untuk manusia harini? DUIT dan HARTA. 🤭

Kita simpan HARTA tu tadi lepas tu kita track and trace macam mana pergerakan harta tu tadi. Something like macam mana dia di pass down kan to others.

Macam contoh yang selalu diberi transaksi kewangan – macam mana direkodkan keluar masuk dari person A ke person B ke C dan seterusnya.

Memandangkan pergerakan tu secara digital, maka setiap transaksi akan diberi kod. Kod tu selalunya Panjang berjela dan biasanya nombor la. Kadang kalau perasan, bila kita buat transaksi akan keluar no Panjang-panjang kat url  contoh macam ni 18c177926650e5550973303c300e136f22673b74. 

Ok no panjang2 ni biasanya dia panggil digital signature …. Sebab everytime kita nak buat transaksi kewangan, kan kita kena log in, masuk username, and password, ada verification code lagi dan sebagainya.  So setiap tapisan ni adalah yang kita ketahui untuk tujuan keselamatan.  Tapi little that people know, setiap layer keselamatan ni la yang membentuk code nombor yang Panjang berjela tu.

Alaaa macam TAC Code Maybank2u yang korang terima tu. Haaa contoh mudah la tu nak bagi faham. Sebab tu kita diberi peringatan JANGAN KONGSI NO TAC dengan sesiapa. Ini mungkin salah satu sebabnya.

Cuma saya tak pasti nombor tu di generate ada algorithm atau tidak. Kalau ada pattern of algorithm, maknanya tak secure sebab finally dia akan boleh di hack. ini sis tak pasti - biasalah dah malas membaca. hahaha

Tapi transaction tu memang orang yang ada akses memang boleh tengok. Tengok transaksi tau – maksudnya pergerakan harta tu pergi mana. Yang sepatutnya dia tak boleh tengok ialah security code / algorithm yang menggerakkan harta tu. Dan security code tu biasanya susah dan dia claim tak ada sapa boleh tembusi la code tu sebab di generate beberapa layer dah.

Tapi yang pasti dengan adanya block of information ni, kita boleh trace setiap transaksi kewangan tu pergi mana.

Kalau duit, kita mungkin la tak nampak sangat ke sebab kita tak pegang physical duit tu. 

Tapi ada satu video yang saya tonton tu, information yang disimpan dalam block tu – adalah geran tanah. Dan dia tunjuk macam mana geran tanah kan disimpan dari generasi ke genarasi tapi in between ada yang cuba macam manipulate la cakap geran tanah tu dia punya dan dah dijual oleh great great great grandfather or what not.   Tapi bila generasi baru yang faham blockchain ni, dia boleh call for investigation dan trace balik setiap transaction pasal geran tanah tu tadi. 

Okay itu BLOCK (contain of valuable digital information)

tapi information tak disimpan untuk jadi khazanah.

dia disimpan untuk di share tapi with selected people.

Maka CHAIN tu datang kat mana? The pass down transaction tu akan create many other BLOCK of information yang pada akhirnya membentuk rantaian.

Dan again macam konsep security (password, secure code etc as explained above), setiap chain tu akan dihubungkan melalui apa yang dipanggil NODES.

so, to hands down or pass down the information - perlukan CHAIN. dan chain perlu dikawal dengan security layer. Dan nak cerita pasal chain dan nodes ni mungkin perlu karangan siri lain.

Macam biasalah sis dah ngantok, jadi bebelan ni berhentilah secara mengejut macam biasa. 

Tapi sebelum bersurai sis nak bagitau, sebenarnya kalau di google, memang banyak article tentang blockchain ini. Antara kefahaman yang rasa acah-acah nak faham mungkin boleh cuba baca kat link ni:

RUJUKAN:

so tu je la nak bebel. kalau sis salah faham, tolong perbetulkan ya. terima kasih.

Untuk itu sekian.

Selamat tidur.

#bilahudatulis